Posts etiquetados ‘El País’

Desafío El País – Una camiseta bordada en Zigzag

Publicado: 21 noviembre, 2012 de Pepe E. Carretero en Matejuegos
Etiquetas:, , ,

Dos estudiantes de Estalmat-Catalunya Andrea Isern Granados, alumna de 3º de ESO en el Instituto Salvador Espriu de Barcelona, y Silvia Martos Baeza, alumna de 3º de ESO en el Instituto Cubelles, de Cubelles (Garraf, Barcelona) presentan el decimotercero de los desafíos matemáticos con los que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española.
A continuación, para aclarar posibles dudas y en atención a nuestros lectores sordos, incluimos el enunciado por escrito.

Se quiere diseñar un adorno bordado para una camiseta siguiendo el esquema y las condiciones siguientes:

a) Las puntadas se realizarán en zigzag entre dos rectas que forman un ángulo alfa (ver dibujo en el vídeo).

b) La primera puntada empezará en el punto O, común a las dos rectas, y acabará en una de las rectas (que llamaremos horizontal).

c) Todas las demás puntadas deberán tener la misma longitud y se trazarán sin superponerse ni volver hacia atrás.

d) La última puntada debe ser perpendicular a la línea horizontal.

e) Queremos dar exactamente 20 puntadas.

Se pregunta: 1) ¿Cuál debe ser el ángulo alfa para que se cumplan esas condiciones? 2) Si la distancia entre O y el punto de la horizontal por donde pasa la última puntada fuera de 25 cm ¿Cuál sería la longitud de cada puntada? 3) ¿Qué ocurriría si quisiéramos hacer 21 puntadas en vez de 20 con las mismas condiciones, esto es, que la número 21 fuera perpendicular a la horizontal?

Anuncios

Josefa Ramírez Rodríguez, licenciada en matemáticas por la Universidad de Extremadura y Responsable de Sistema de Información en el RACC presenta el duodécimo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

A continuación, para aclarar dudas y en atención a nuestros lectores sordos, incluimos el enunciado por escrito.

Se quiere organizar una exhibición de coches de carreras de manera que al comienzo los vehículos formen un cuadrado (de n filas de coches de n coches cada una) y al final los mismos automóviles formen un rectángulo en el que el numero de filas inicial aumente en 5. ¿Puede saberse con total seguridad cuantos coches participarían en esa exhibición? En caso afirmativo, dar el número (justificando la respuesta) y en caso negativo explicar por qué no puede saberse.

Desafíos El País – Pesando Tornillos

Publicado: 2 junio, 2012 de Pepe E. Carretero en Matejuegos
Etiquetas:, ,

Belén Alcázar, Dana Calderón, Daniel de Maeseneire, Irene Carmona, Javier Quirós, Jimena González y Patricia Novo, alumnos de 1º ESO del IES Alameda de Osuna (Madrid), presentan el undécimo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

A continuación, para aclarar dudas y en atención a nuestros lectores sordos, incluimos el enunciado por escrito.

Tenemos seis cajas con 13 tornillos cada una. En tres cajas los tornillos pesan seis gramos cada uno y en las otras tres los tornillos pesan cinco gramos cada uno (todos los tornillos de cada caja pesan lo mismo), pero las cajas tienen todas el mismo aspecto. Tenemos también una báscula de precisión a nuestra disposición (no una balanza) donde podemos pesar los tornillos que queramos. ¿Cuál es el mínimo número de veces que necesitamos utilizar la báscula para saber qué cajas contienen los tornillos de cinco gramos y de qué manera se haría?

Dasafíos El País – Cómo rellenar las piezas de un tablero

Publicado: 2 abril, 2012 de Pepe E. Carretero en Matejuegos
Etiquetas:,

 

María López Valdés, licenciada en Matemáticas y promotora de la empresa Bit&Brain Technologies, presenta el décimo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

Para aclarar dudas y en atención a nuestros lectores sordos, incluimos a continuación el enunciado por escrito.

Tenemos un tablero cuadrado de 9×9=81 casillas iguales y 20 piezas idénticas de la forma que se muestra en el vídeo.

Se trata de ir poniendo piezas en el tablero en cualquier posición, como en un puzzle, con el objetivo final de cubrir el MAYOR número de cuadrados posible, o lo que es lo mismo, dejando vacíos el MENOR número de cuadrados posible. Cada cuadrado de la pieza ocupa exactamente un cuadrado del tablero y las piezas no se pueden solapar.

Dividimos el problema en dos cuestiones:

1. Demostrar que NO ES POSIBLE cubrirlo dejando solo un cuadrado libre.

2. ¿Cuál es el MENOR número de cuadrados que pueden dejarse VACÍOS en el tablero al recubrirlo con este tipo de piezas?

 

Nota: Las piezas son reversibles

Alberto Elduque, catedrático de Álgebra de la Universidad Zaragoza, presenta el noveno desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

NOTA IMPORTANTE: Para aclarar dudas y en atención a nuestros lectores sordos, incluimos a continuación el enunciado por escrito.

Hemos copiado mal una potencia de 2. Sólo sabemos que el exponente empieza por 528, luego hay varias cifras, y termina en 7301. Hay que calcular cuáles serían las dos últimas cifras de tan enorme número.

Desafíos El País – Un Cubo de Suma Cero

Publicado: 3 febrero, 2012 de Pepe E. Carretero en Matejuegos, Video
Etiquetas:,

Izar Alonso (IES Diego Velázquez de Torrelodones) y Paula Sardinero (Colegio Virgen de Europa de Boadilla del Monte), estudiantes de 4º de ESO que participan en el Proyecto ESTALMAT, presentan el octavo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

NOTA IMPORTANTE: Para aclarar dudas y en atención a nuestros lectores sordos, incluimos a continuación el enunciado por escrito.

A cada uno de los vértices de un cubo le asignamos un 1, o un -1. Después asignamos a cada una de las caras el producto de los números de sus vértices.

Puede hacerse la asignación inicial de manera que la suma de los 14 números (8 de los vértices y 6 de las caras) sea 0? Encontrar tal asignación o demostrar que no existe. Como en el problema del reloj, se recomienda no probar con todos los casos posibles.

 

Desafíos El País – Un Piano Gigantesco

Publicado: 27 diciembre, 2011 de Pepe E. Carretero en Matejuegos, Video
Etiquetas:,

 

José Garay, profesor de la Universidad de Zaragoza, presenta el séptimo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

Enunciado: Sabemos que al pulsar las teclas blancas de un piano se reproducen periódicamente las siete notas de la escala musical Do, Re, Mi, Fa, Sol, La y Si. Por lo tanto aunque el piano tenga muchas teclas, solamente podemos escuchar las siete notas de la escala, eso sí, en diversas octavas. Los pianos reales tienen un número limitado de teclas, pero para nuestro problema vamos a imaginar un piano con un teclado tan largo como nos sea necesario. E imaginaremos que pulsamos SÓLO las teclas blancas.

Primero pulsamos el primer Do que tenemos por la izquierda. A continuación pulsamos la siguiente tecla, que naturalmente será un Re. Luego saltamos una tecla y tocamos el Fa. Ahora saltamos dos teclas y tocamos el Si. Seguidamente saltamos tres teclas y tocamos el Fa, ya en la segunda octava. Y continuamos el proceso saltando cada vez una tecla más que la vez anterior. Como hemos supuesto que nuestro piano tiene tantas teclas como queramos supongamos que hemos llegado a tocar 7.000 teclas. Y hacemos dos preguntas:

1. ¿Cuántas teclas habremos tocado que corresponden a la nota Do?

2. ¿Habrá alguna nota que no haya sido pulsada en ningún momento?

Aclaración: Por si acaso alguien se confunde y piensa que nuestro piano tiene solo 7.000 teclas, hemos de insistir en que 7.000 es el número de teclas que tocamos, y dado que entre dos teclas pulsadas hay muchas que no se tocan, se deduce que nuestro imaginario piano tiene muchas más que esas 7.000. Y aunque este número no es necesario para resolver el problema podemos afirmar que el piano debe tener unos 24 millones y medio de teclas blancas.

Desafíos El País-Una Cuestión de Sombreros

Publicado: 30 noviembre, 2011 de Pepe E. Carretero en Matejuegos, Video
Etiquetas:,

Javier Lázaro, estudiante de 4º de Matemáticas en la Universidad de Zaragoza, presenta el sexto desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española.

Enunciado del problema por escrito.

Se informa a 30 presos de que se les va a colocar formando una fila y se les va a poner un sombrero en la cabeza a cada uno, blanco o negro, sin especificar cuántos gorros se pondrán de cada color (pueden ser 29 blancos y uno negro, 15 y 15, 17 y 13…). Cada preso sólo verá los sombreros de los prisioneros que tiene delante pero no el suyo ni los de detrás. Un guardia irá preguntando sucesivamente a cada uno de los presos desde el último (el que ve todos pero no el suyo) al primero (que no ve ninguno) de qué color es su sombrero. Los presos sólo pueden contestar blanco o negro: si aciertan son liberados y si no, son ejecutados. Todos los presos pueden escuchar las respuestas anteriores a las suyas.

Antes de llevar esto a cabo, los presos, que conocen la prueba a la que van a ser sometidos pero no naturalmente de qué color serán sus sombreros, tienen un tiempo para hablar entre ellos y pensar una estrategia de grupo. ¿Cuál es la mejor estrategia para salvar SEGURO al mayor número de prisioneros? ¿Cuántos se salvan seguro con esa estrategia?

Atención: Para aclarar algunas dudas que han surgido ya entre los lectores. Los prisioneros no pueden hacer señas, ni tocar a los otros, ni dar pistas con el tono o volumen de voz… deben contestar blanco o negro de la forma más aséptica posible porque si los carceleros detectaran algún truco de los mencionados, matarían a todos.

Desafíos El País – Un PAÍS de Palillos

Publicado: 19 noviembre, 2011 de Pepe E. Carretero en Matejuegos, Video
Etiquetas:,

El quinto desafío de EL PAÍS, con el que celebramos el centenario de la Real Sociedad Matemática Española, lo presenta Fernando Corbalán, catedrático de matemáticas y subdirector de DivulgaMAT.

Para aclarar cualquier duda y en atención también a nuestros lectores sordos incluimos por escrito el problema por escrito.

Presentamos dos juegos y se trata de encontrar qué estrategia ganadora tienen, esto es, el procedimiento para ganar siempre, por muy hábil que sea nuestro rival. La estrategia puede ser del jugador que mueve primero o del segundo, eso también hay que averiguarlo. Obviamente, si el primer jugador tiene estrategia ganadora, no la tendrá el segundo. Para ambos juegos formamos la palabra PAIS con palillos de la forma en que se ve la imagen de arriba o el vídeo.

Primer juego: Por turnos, cada jugador retira uno, dos o tres palillos del dibujo. Gana el que retira el último palillo, esto es, el que deja la mesa vacía.

Segundo juego: Por turnos, los jugadores retiran el número que quieran de palillos pero siempre de la misma letra cada vez (de la P, de la A, de la I o de la S). Gana también el que retira el último palillo.

Se trata, como decíamos de hallar la estrategia ganadora en ambos juegos (el modo de ganar seguro) precisando si la tiene el jugador que abre el juego o el segundo.

Desafíos El País-Un Reloj de dos colores

Publicado: 30 octubre, 2011 de Pepe E. Carretero en Matejuegos, Video
Etiquetas:,

Elisa Lorenzo García, estudiante de doctorado de la Universidad Politécnica de Cataluña, plantea el cuarto desafío matemático de EL PAÍS.

Enunciado del problema por escrito.

Se considera un reloj con sus 12 números en torno a una circunferencia: 1, 2, …, 12. Se pintan de azul o rojo cada uno de los 12 números de modo que haya seis pintados de azul y seis de rojo. El problema consiste en demostrar, que, independientemente del orden en que se hayan pintado, siempre existirá una posible recta que divida al reloj por la mitad, dejando en cada lado seis números, tres pintados de rojo y tres pintados de azul.