Posts etiquetados ‘En Clase’

PIPAS

Publicado: 14 abril, 2014 de Pepe E. Carretero en Video
Etiquetas:,

PIPAS / πpas / 3.1416… / Corto sobre el fracaso educativo y la importancia del aprendizaje.

Avalada por diferentes premios y conocimientos, Pipas refleja la importancia de aprender y muestra el fracaso escolar de la sociedad a través de la mirada de dos chicas jóvenes.

Ganador de los premios al mejor Guión y a la mejor dirección en la XI Edición del Notodofilmfest

Protagonizado por Marta Martín y Saida Benzal

Guión y Dirección Manuela Moreno

Foto: Jon Corcuera

Productora: MOMENTO

Más info: cortopipas.blogspot.com.es/

¿Instrucciones?

Publicado: 7 octubre, 2013 de Pepe E. Carretero en 'Bello'
Etiquetas:, , ,

No sé si lo puse ya, no importa, ne gusta.

Me gusta como está hecho el vídeo, me gusta su música, pero me gusta la historia, por su significado, por todo lo que aporta en nuestra labor diaria.

PD: El vídeo está basado en un relato de Julio Cortázar, llamado así, busca, es sencillo de encontrar y sencillamente es genial.

‘Los Bernoulli’ – Láminas del Mundo

Publicado: 28 diciembre, 2012 de Pepe E. Carretero en Matimágenes
Etiquetas:, , , ,

'Los Bernoulli' - Láminas del Mundo

Un problema “estilo Dan Meyer”

Publicado: 21 noviembre, 2012 de Pepe E. Carretero en Problemas
Etiquetas:, , , ,
Dando un paseo por mi mi lista de lectura me he encontrado un problema, sí un PROBLEMA, tan habituado a encontrarme con ‘problemas’ que no lo son, tan solo son ejercicios con más letras que los ‘ejercicios’, me ha llamado la atención y me ha gustado, por eso lo reproduzco aquí. Su autor es Pedro Ramos y a parece publicado en su más que recomendable blog Más ideas, menos cuentas. Un blog sobre educación matemática.

Hoy, una entrada cortita y desengrasante. Los últimos días de lluvia me han dejado este problema en el jardín:

Las lluvias de la última semana han llenado de agua 2/3 del cubo de la foto. ¿Cuánto ha llovido? (La altura de la botella es de 20 cm).

Parte del problema consiste en investigar cómo se miden las precipitaciones. Aquí tengo una duda: ¿cuánta gente “de la calle” sabe que las dos unidades que se utilizan usualmente son, en realidad, la misma?

La entrada en su lugar original: Un problema “estilo Dan Meyer”

Recurriendo a Escher

Publicado: 1 junio, 2012 de Pepe E. Carretero en Matimágenes
Etiquetas:, , , ,

ESTALAMT – Sedes y Horarios

Publicado: 27 mayo, 2012 de Pepe E. Carretero en Noticias & Convocatorias
Etiquetas:,

Números pares e impares

Publicado: 14 mayo, 2012 de Pepe E. Carretero en Tusitala
Etiquetas:, , , ,

 

“La serie de los números pares es justamente la mitad de la serie total de números. La serie de los números impares es exactamente la otra mitad. La serie de los pares y la serie de los impares son —ambas— infinitas. La serie total de los números es también infinita. ¿Será entonces doblemente infinita que la serie de los números pares y que la serie de los impares? Sería absurdo pensarlo, porque el concepto de infinito no admite ni más ni menos. ¿Entonces, las partes —la serie par y la impar—, serán iguales al todo? —Átenme ustedes esa mosca por el rabo y díganme en qué consiste lo sofístico de este argumento.

Mairena gustaba de hacer razonar en prosa a sus alumnos, para que no razonasen en verso.”

Antonio Machado Ruiz (1875-1939) en Juan de Mairena. Apuntes inéditos (1936).

Tomo como punto de partida de esta segunda parte dedicada a Thales, la introducción que Wikipedia da en su biografía

Tales de Mileto (en griego Θαλῆς ὁ Μιλήσιος) (ca. 630 – 545 a. C. ) fue el iniciador de la indagación racional sobre el universo. Se le considera el primer filósofo de la historia de la filosofía occidental, y fue el fundador de la escuela jónica de filosofía, según el testimonio de Aristóteles. Fue el primero y más famoso de los Siete Sabios de Grecia (el sabio astrónomo), y habría tenido, según una tradición antigua no muy segura, como discípulo y protegido a Pitágoras. Fue además uno de los más grandes matemáticos de su época, centrándose sus principales aportaciones en los fundamentos de la geometría.

En los breves apuntes biográficos dados en la Parte I, dedicada al sabio milenio, hice hincapié en los viajes que Thales realizó principalmente a la Mesopotamia, donde conoció la Astrología Babilónica y también sus Matemáticas (esto tiende a obviarse dado el gran desarrollo de las ciencias celeste de aquel pueblo) y sobre todo a Egipto. De Egipto, de su agricultura más concretamente,  provienen casi todos los hecho geométricos atribuidos a Thales, nadie duda esto actualmente, lo que también se asume hoy en día es que fue Thales, y ese es uno de sus grandes méritos, quién transfirió la Geometría de Ciencia Descriptiva a Ciencia Exacta, abriendo así el camino, a mi modo de ver, a la mayor aportación en el campo intelectual que el humano ha realizado, la Geometría Griega o Helenística para incluir períodos posteriores de la Grecia Clásica como el romano.

Al intentar analizar las aportaciones al campo geométrico de Thales la primera entrada que encontramos es su famoso teorema. ‘El Teorema de Thales’ ha elevado a categoría de inmortal a nuestro personaje, pocos matemáticos, quizás Pitágoras o Arquímedes, pueden competir en popularidad con él (su teorema estudiado desde las más tempranas edades escolares, aunque difícilmente recordado, evoca el nombre del autor pasados los años de aprendizaje).

Resulta sorprendente para los que son capaces de recordar el enunciado de las paralelas cortadas por secantes o viceversa encontrarse con el enunciado siguiente del ahumado resultado:

Se atribuye a Tales el haber transportado desde Egipto a Grecia múltiples conocimientos y herramientas elementales de geometría. Aunque no es históricamente seguro, se acepta generalmente como su principal aporte el haber sostenido ya en su época lo que expresa un teorema que lleva su nombre, es decir, que un triángulo que tiene por lado el diámetro de la circunferencia que lo circunscribe es un triángulo rectángulo.

Entrada en Wikipedia

Imagen tomada de aquí

Y es cierto, el enunciado anterior también es conocido como el Teorema de Thales, de hecho hay dos teoremas así denominados y atribuidos al mismo autor. Pero aún hay más, la versión de las paralelas, cortadas… no constituye en sí el, primer Teorema de Thales (el ordinal es una manera de poder referirme a ellos), sí una consecuencia que se demuestra equivalente al enunciado original y que puede ser expresado así:

“Si por un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes.”

Estaremos de acuerdo que esta versión es más agradable y menos engorrosa que las proporcionalidad establecidas entre segmentos correspondientes en un sistema de paralelas cortados por dos secantes.

Básicamente la versión triangular del teorema nos indica como construir un triángulo semejante a otro dado, por lo tanto parte de la noción de semejanza que posiblemente Thales bien conociera de los agrimensores egipcios y a la que le sacó un gran rendimiento estableciendo, como consecuencia, ‘la constancia’ de los lado de los triángulos como luego veremos en la medición de las pirámides.

La segunda versión, la de los triángulos inscritos en una circunferencia y con un lado sobre el diámetro es muy útil a la hora de construir triángulos rectángulos, método muy usado en aquellos tiempos junto a la cuerda anudada dividida en doce partes iguales y otros.

De cualquiera de las maneras el éxito de Thales no está en su uso, cosa que se hacía antes que él, si no en su establecimiento como resultado esencial de la geometría, enunciándolo y refutándolo.

Con estos miembros se hundió la leyenda, cierta o no poco nos importa, que Plutarco relató sobre la medición de las alturas de las pirámides de Guiza, Keops, Kefrén y Micerinos, en Egipto.

¿Cómo midió Thales dichas pirámides?

Para responder la pregunta intentaré separar conceptos que, desde mi perspectiva, no separamos (estoy hablando ahora en clave profesor de secundaria) al trabajar con el teorema en el aula. Partimos de dos elementos, la noción de semejanza (igualdad de ángulos y proporción en los lados) y el enunciado del primer teorema, que nos garantiza la construcción de un triángulo semejante a uno dado.

Si nos encontramos al aire libre y clavamos, perpendicularmente al suelo un par de estacas de diferentes alturas del modo que se representa en la figura, fácilmente observamos que los dos triángulos que aparecen se encuentran en las hipótesis del teorema de Thales por lo tanto nuestros triángulos son semejantes. Pero ¿podemos establecer que A/B sea igual a D/C? la respuesta es sí, pero ni mucho menos es algo inmediato, un corolario de nuestro teorema así nos lo garantiza pero esa no es la tesis del teorema en sí. Es decir, el hecho de construir un segundo triángulo a partir de otro dado trazando una paralela a un lado me garantiza la semejanza de los dos triángulos ( o sea si comparo ‘lados correspondientes’ obtendré la misma razón) pero no tengo, a priori (eso sí se prueba luego), garantizada que se mantenga constante el cociente entre los lados de un mismo triángulo.

El mantenimiento de estos cocientes, en la figura A/B = D/C, queda establecida por Thales como consecuencia del teorema y en él se apoya el genial matemático para medir las pirámides.

Plutarco se hace eco de una leyenda que decía que Tales de Mileto en uno de sus viajes a Egipto, visitó la necrópolis de la meseta de Guiza  y sus famosas pirámides erigidas en honor a sus faraones, construidas varios siglos antes.

Admirado ante tan portentosos monumentos de esta civilización, quiso saber su altura. De acuerdo a la leyenda, trató este problema con semejanza de triángulos (y bajo la suposición de que los rayos solares incidentes eran paralelos), pudo establecer una relación de semejanza (teorema primero de Tales) entre dos triángulos rectángulos, por un lado el que tiene por catetos (C y D) a la longitud de la sombra de la pirámide (conocible) y la longitud de su altura (desconocida), y por otro lado, valiéndose de una vara (clavada en el suelo de modo perfectamente vertical) cuyos catetos conocibles (A y B) son, la longitud de la vara y la longitud de su sombra. Realizando las mediciones en una hora del día en que la sombra de la vara sea perpendicular a la base de la cara desde la cual medía la sombra de la pirámide y agregando a su sombra la mitad de la longitud de una de las caras, obtenía la longitud total C de la sombra de la pirámide hasta el centro de la misma.

Como en triángulos semejantes, se cumple que A/B = D/C , por lo tanto la altura de la pirámide es D = (A·C)/B , con lo cual resolvió el problema.

Entrada en Wikipedia

Thales trabajó y perfeccionó estos sistemas indirectos de medición y los fue aplicando con distintos fines, entre ellos a la navegación tan importante para las ciudades estado griegas.

Seguro que esta es la más conocida de las anécdotas atribuidas a Thales, pero su aportación a la geometría fue más allá, llegando a dominar las bases de lo que luego se denominaría Geometría Euclidea, como el hecho de que cualquier diámetro de un círculo lo dividiría en partes idénticas, que un triángulo isósceles tiene por fuerza dos ángulos iguales en su base o las propiedades relacionales entre los ángulos que se forman al cortar dos paralelas por una línea recta perpendicular. Pero por encina de los conocimientos concretos que poseyera lo esencial en él fue alcanzar unos niveles de complejidad y abstracción en su trabajo fuera del alcance  de los agrimensores egipcios. El establecimiento de sus teoremas supone el germen del concepto de demostración, poniendo las bases para la organización racional de la ciencia, posiblemente mucho de lo recogido, años más tarde, en Los Elementos por Euclides provenga de él. En definitiva  Thales dio el salto definitivo de la descripción a la formalización, el salto que condujo a la creación de la Geometría, sobre cuyos hombros descansó la ciencia hasta bien entrado el siglo XIX.

Referencias

Tales de Mileto-Wikipedia, la enciclopedia libre.

Teorema de Tales-Wikipedia, la enciclopedia libre.

Carnaval de Matemáticas (y 4): El teorema de Thales y su historia aderezados por Les Luthiers

Serie de Biografías Universales. Thales de Mileto. Encyclopedia Chanel vía Youtube.

El Legado de Pitágoras. Canal Historia.

Un Niño

Publicado: 6 mayo, 2012 de Pepe E. Carretero en Tusitala
Etiquetas:, , , ,

Imagen

J. B. Büttner, maestro de un colegio alemán, castigó a todos los niños a sumar los 100 primeros números naturales para tenerlos entretenidos y callados un buen rato. Carl Friedrich Gauss obtuvo la respuesta casi de inmediato: 1 + 2 + 3 + … + 99 + 100 = 5050.” Una historia mil veces contada. Todos los profesores de primaria y secundaria se la cuentan a sus alumnos. ¿Ocurrió de verdad? ¿Hay alguna evidencia histórica? Sigue la historia contando que “Gauss, el niño prodigio, se dio cuenta de que 1 + 100, 2 + 99, 3 + 98, etc., todos suman 101, y que hay 50 de estos pares, resultando 50 × 101 = 5050. La fórmula más general para la suma aritmética de 1 al n es n(n+1)/2.” ¿Cómo verificó el profesor la respuesta de Gauss? ¿Conocía el maestro de escuela la fórmula para sumar una serie aritmética? ¿El maestro sumó uno a uno los números del 1 al 100 alguna vez en su vida? ¿Esta historia pertenece al mismo género que la historia de Newton y la manzana, o de Arquímedes y la bañera? Nos cuenta todo lo que se sabe de verdad (históricamente) sobre esta historia Brian Hayes, “Gauss’s Day of Reckoning. A famous story about the boy wonder of mathematics has taken on a life of its own,” American Scientitst, 94: 200, May-June 2006 (web y pdf).

Visto en Francis (th)E mule Science’s News. Lee la entrada completa y desvela la verdad de la anécdota.